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A simple method for the stereocontrolled synthesis of both a and b pseudo-anomers of a thio-function-
alized C-glycoside is described. A 2,3:4,6-di-O-isopropylidene manno scaffold is employed to allow a
strict control of the diastereoselectivity of the base-catalyzed intramolecular hetero-Michael addition
of an alcohol to a vinyl sulfone, by simply changing the temperature of the reaction.
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Saccharidic lactols have been early recognized as intermediates
of choice for the elaboration of complex, biologically-relevant
C-glycosidic architectures.1,2 The aldehyde species present in solu-
tion as a minor isomer in equilibrium with both a- and b-lactol
anomers can undergo Wittig-type transformations to yield highly
functionalized, acyclic c- and/or d-hydroxy substituted unsatu-
rated building blocks.3 These compounds can subsequently be con-
verted into C-glycosides through electrophile-induced cyclizations
whose regio- and stereoselectivities are usually determined by
kinetics.4 Olefins bearing electron-withdrawing groups can alter-
natively undergo base-catalyzed regioselective hetero-Michael
cyclizations. Depending on the experimental conditions, the stereo-
selectivity of the ring closure can be controlled by either kinetic
or thermodynamic factors: at relatively high temperature, an
epimeric C-glycoside mixture can equilibrate through a retro-
Michael/Michael process. As a consequence in the pyrano series,
thermodynamic-controlled cyclizations often produce stereoselec-
tively the b pseudo-anomers corresponding to a stabilizing equato-
rial substitution.5 Low temperature, kinetically governed ring
closures usually lead to mixtures of a- and b-C-glycopyranosides,
whose composition mainly depends on the nature and stereo-
chemistry of the C-2 substituent6 and on the configuration of the
double bond.7
ll rights reserved.

: +33 238 690 151.
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M.
Even if highly powerful, this two-step Wittig/hetero-Michael
cyclization pathway to C-glycosides suffers from the difficulty to
avoid concomitant uncontrolled ring closure during the olefin-
forming reaction (Scheme 1). Slightly basic, stabilized phospho-
nium ylides sometimes afford cleanly the expected open-chain
unsaturated compound,8 but more commonly give a mixture of
cyclic and open-chain isomers. The product distribution is strongly
dependent on the substrate (sugar series, protective groups) and
on the reaction conditions.9 Making use of more basic Horner-
Wadsworth-Emmons reagents usually results in the formation of
a mixture of epimeric C-glycosides,10 but the b-C-pyranoside can
be obtained under appropriate equilibrating, thermodynamical
conditions.5a,11

We recently proposed a general and efficient synthetic pathway
to saccharidic vinyl sulfides involving the reaction of a semi-stabi-
lized phosphonium ylide with protected sugar lactols.12 These
compounds are virtually unable to undergo hetero-Michael
cyclization,13 but can easily be oxidized into a variety of further-
functionalized Michael acceptor moieties (i.e., vinyl sulfones,
sulfoxides, sulfimides, and sulfoximines,. . .) under conditions that
prevent any counterproductive cyclization. This method allows
for the ability to access a wide range of open-chain saccharidic ole-
fins for evaluation in the hetero-Michael reaction to form thio-
functionalized C-glycosides under kinetic or thermodynamic
conditions.

This preliminary report focuses on the model d-hydroxy
vinyl sulfide 1 which can potentially lead to biologically relevant
C-D-mannopyranosides. Z-1 can be obtained in high yield and
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Scheme 1. Wittig/hetero-Michael pathway to C-glycosides.
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stereochemical purity from readily available 2,3:4,6-di-O-isopro-
pylidene-D-mannopyranose (Scheme 2).17 We reasoned that the
presence of the bulky 2,3-O-isopropylidene moiety on the b-face
of the C-glycoside product could favor the kinetic formation of
the a-compound due to a probable steric clash in the b-transition
state, whereas not affecting dramatically the thermodynamic pref-
erence to the b equatorial product.

We first concentrated on sulfones: sulfonylmethyl C-glycosides
are useful synthetic intermediates in the synthesis of sulfur-
free C-glycosidic architectures through Ramberg—Bäcklund
rearrangement14 or reductive desulfonylation15 and have been
successfully employed as non-hydrolyzable mimics of glycosyl-
phosphodiesters.16

When subjected to standard over-oxidizing conditions (excess
m-CPBA, CH2Cl2),18 1 afforded the expected vinyl sulfone 219 albeit
in low yields due to partial deprotection of the highly acid-sensi-
tive dioxane-type 4,6-O-isopropylidene group in the course of the
reaction. Addition of solid sodium bicarbonate to the reaction mix-
ture proved to be efficient enough to prevent any undesirable
hydrolysis or acetal migration which could be induced by acidic
side-products (Scheme 2).

We then focused on finding conditions for the selective forma-
tion of the thermodynamic product in the hetero-Michael reaction.
We found that simple treatment of 2 with a catalytic amount
(0.25 equiv) of freshly sublimed t-BuOK in THF for a few hours at
room temperature quantitatively afforded a single epimer (3 or
4) of the expected C-glycoside (95% isolated yield).20 Its pseudo-
anomeric configuration was assigned as b(4) on the basis of ROESY
2D 1H NMR experiments. No detectable amount of the a-epimer 3
can be observed in the 1H NMR spectrum of the crude product mix-
ture. This selectivity is attributed to a quick equilibrium between
the two possible epimeric products, providing a strict thermo-
dynamic control of the reaction. As anticipated, treating isolated
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Scheme 2. Synthesis of a model saccharidic vinyl sulfone.
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Scheme 3. Hetero-Michael cyclization under thermodynamic contro
4 with excess t-BuOK at higher temperatures and for longer times
did not affect its stereoisomeric integrity (Scheme 3).

Having developed experimental conditions to produce selec-
tively the b-C-mannopyranoside 4, we started to investigate the
effect of a lower reaction temperature on the product distribution
and the retro-Michael/Michael epimerization process. We were
delighted to find that simple treatment of 2 with 0.25 equiv t-BuOK
in THF at �78 �C induced a smooth cyclization into the expected
C-glycosides as a mixture dramatically enriched into the axial
a-epimer 3 (3:4 9:1 ratio, 1H NMR). When subjected to the same
conditions, isolated 3 remained unchanged, while raising the
temperature up to 25 �C caused a quick and irreversible epimeriza-
tion to produce almost-pure 4. This demonstrates that under our
conditions, the retro-Michael process can be easily switched on
and off through a simple temperature change, whereas the Michael
cyclization remains a rather fast reaction.

With a view to improving the diastereoselectivity in the latter
process by minimizing the activation energy and consequently
favoring discrimination between the two possible transition states,
an experiment was conducted at �95 �C. As expected, the selectiv-
ity of the addition in favor of 3 was further increased (>95:5, 1H
NMR). Guided by practical considerations, the t-BuOK ratio was
then raised up to a nearly stoichiometric amount in order for
the—otherwise rather lengthy-reaction to proceed within a few
minutes while keeping the product distribution unchanged.21

We believe that this exceptionally high a-diastereoselectivity
for a kinetically governed hetero-Michael C-glycoside formation
originates in the combined effects of a 2-axial substituted manno
scaffold with a Z-configuration of the vinyl sulfone double bond,
thus maximizing the steric interactions in the transition state lead-
ing to the b-C-glycoside (Scheme 4). This observed 1,2-trans-selec-
tivity is fully consistent with the empirical rule established by
Martin et al.7a for the related kinetically governed hetero-Michael
cyclization of c-benzoyloxy-a,b-insaturated esters: Z-olefins al-
ways strongly favor the formation of 1,2-trans C-pyranosides while
their E-stereomers produce more cis-configurated product.

Based on these findings, we tried to expand this methodology to
vinyl sulfoxides. With this objective, 1 was readily converted into a
S-epimeric mixture of sulfoxides,22 from which a single major dia-
stereomer 523 was isolated in 58% yield (Scheme 5). Deceptively,
under the low temperature conditions previously optimized for
vinyl sulfone 2, vinyl sulfoxide 5 remained unreacted. The temper-
ature had to be raised up to 0 �C in order to observe (TLC) a slow
cyclization process to produce a mixture of epimeric C-glycosides
O
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l: production of a b-C-mannopyranoside. a: 95% isolated yield.



Tetrahedron Letters 

OH

O

O O

O SO2Me

O

SO2Me

O

O O SO2Me

O
O

O

O

O

O

O
HH

H

MeSO2

O
OK

O

HH

H

MeSO2O
OK

O

O

O

O

2

3, > 95%a

tBuOK 
0.8 equiv.

THF -95˚C
30 min.

4, < 5%

Scheme 4. Hetero-Michael cyclization under kinetic control: production of a a-C-mannopyranoside. a: 93% Isolated yield.

O S

O
O

Me

O
O

O

O S

O
O

TBDMSO

O

OO

O O

OH CHO

O

O
O

CHOO

O

OH

O

O O

O S
Me

O

OTBDMS

OMe

*

1

1 equiv. m-CPBA, 
 NaHCO3 ,CH2Cl2

58%

THF, RT, 18h

93%

0.25 equiv. tBuOK

        TFAA
  pyridine
CH2Cl2

        ZnI2
         CH3CN

54%

5
6

78

*

      then 
    Et3N
MeOH

44% over 2 steps

Scheme 5. Hetero-Michael cyclization of vinyl sulfoxide 5 and further Pummerer rearrangement of the b-C-glycosidic product 6.
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which, in our hands, was not easily separable using conventional
preparative methods. Such dramatically reduced reactivity of 5 as
compared to 2 can be explained by the large difference in
Michael-acceptor ability between a,b-unsaturated sulfones and
the related sulfoxides. This considerably raises up the activation
energy to access both a- and b-transition states and, as a
consequence, weakens the kinetic discrimination between the
two epimeric C-glycosides.24 A more rewarding result was reached
when using the thermodynamically controlled conditions
previously optimized for sulfone 2: within decent time, sulfoxide
5 was almost quantitatively converted into the b-C-mannopyrano-
side sulfoxide 6 (93% isolated yield).25

In order to illustrate the potency and versatility of sulfinylmeth-
yl C-glycosides as synthons for the production of biologically rele-
vant carbohydrate mimics, the sulfoxide 6 was subjected to a range
of Pummerer rearrangement-inducing conditions (Scheme 5).
Treating 6 in acetonitrile with Kita’s reagent (O-methyl-O-tert-
butyldimethylsilyl ketene acetal) in the presence of a catalytic
amount of zinc iodide26 led to the formation of the C-glycosidic
sulfide 727 as a major product. Treatment of 6 with trifluoroacetic
anhydride, followed by methanolysis,28 afforded C-formyl glucal
8.29

In summary, we have demonstrated the utility of a three-
step Wittig/vinyl sulfide oxidation/intramolecular hetero-Michael
addition pathway to biologically relevant C-glycosides. The
promising 2,3:4,6-di-O-isopropylidene manno scaffold allows a
strict control of the diastereoselectivity of the hetero-Michael
cyclization on a vinyl sulfone by simply changing the temperature
of the reaction.
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